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PREFACE

Project MICHIGAN is a continuing, long-range research and development pro-

gram for advancing the Army's combat-surveillance and target-acquisition capabil-

ities. The program is carried out by a full-time Institute of Science and Technology

staff of specialists in the fields of physics, engineering, mathematics, and psychology,

by members of the teaching faculty, by graduate students, and by other research

groups and laboratories of The University of Michigan.

The emphasis of the Project is upon research in imaging radar, MTI radar, in-

frared, radio location, image processing, and special investigations. Particular at-

tention is given to all-weather, long-range, high-resolution sensory and location

techniques.

Project MICHIGAN was established by the U. S. Army Signal Corps at The Uni-

versity of Michigan in 1953 and has received continuing support from the U. S. Army.

The Project constitutes a major portion of the diversified program of research con-

ducted by the Institute of Science and Technology in order to make available to gov-

ernment and industry the resources of The University of Michigan and to broaden

the educational opportunities for students in the scientific and engineering disciplines.

Progress and results described in reports are continually reassessed by Proj-

ect MICHIGAN. Comments and suggestions from readers are invited.

Robert L. Hess
Director
Project MICHIGAN
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GLOSSARY

a a constant

C convergence, a measure of the subject's response (see page 11)

"C no convergence, a measure of the subject's response (see page 11)

D detection, a measure of the subject's response (see page 11)

b no detection, a measure of the subject's response (see page 11)

e(n) a model's error at n, e(n) = r(n) - P 2

e 2(n) the expected value of e 2(n), an ensemble average

<e 2>A the average value of e 2(n) over some set of samples A

eM(n) the descriptive model's error at n, eM(n) = r(n) - P2

eMs(n) the error (i.e., disagreement) between the subject and the descriptive model at n,

e Ms(n) = R - r(n)

es(n) the subject error at n, es (n) = Rn - P

<e 2>p, <eM 2>p, <eMeMS >P the average values of e 2(n), eM 2(n) and eM(n)eNs(n) over a

problem

E(x) the expected value of x

FAR false alarm rate, a measure of the subject's response (see page 12)
fpe flashes per second, the flash rate

IC initial convergence, a measure of the subject's response (see page 11)

ins

1 I (P -1  Pi)2

k I the decision criterion level in the descriptive model

k 2  the fractional response adjustment in the descriptive model

k 3  the number of flashes in u(n) in the descriptive model

k4 the flash shift between the subject's and the descriptive model's responses

M the last flash in a subproblem

M i the length of subproblem I
MEC mean error after convergence, a measure made on the subject's response (see page 12)

n a flash index, n = I is the first flash in a subproblem

N the total number of flashes in the model's summation

P the probability of a 1 in a 0,1 binary series

Pi the probability of a 1 in the binary series I

Pr(x) the probability of x

r the geometric ratio in the geometric model
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r(n) a model's response at n

r-Tn the expected value of r(n), an ensemble average

R the subject's response at nn

RMSE the square root of the mean square error, a measure of the subject's response
(see page 11)

RMSEC the square root of the mean square error after the point of convergence, a measureof tie subject's response (see page 12)

p a correlation coefficient

S the total number of subproblems in a problem

s the n-th flash in a binary seriesn

2 the variance of a sample from a population with P = P1

a•2 (n) the variance of r(n) at n, an ensemble average
r (n the vaineof

' the variance of s at n, an ensemble average

T the total number of flashes in a problem

u(n) an average of k 3 flashes in the descriptive model

i-s

v i2l

w a weight attached to sample sn-i+1

ix
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CONTINUOUS HUMAN ESTIMATION OF A TIME-VARYING,
SEQUENTIALLY DISPLAYED PROBASILITY

ABSTRACT

This experiment examines the human ability to give a direct magnitude estimate
of a tLime-varying probability. The subject positioned a "tracking" lever at his esti-
mate of the current mean of a sequentially displayed binary distribution. The distri-
bution samples were presented at a fixed rate by two flashing lights. The distribution
mean changed in step increments of varying size and spacing. The experimental
variables included flash rate and a constraint on the randomness of the flash series.

Detailed measures were made of both the transient and static responses to each
step change. The transient response was more rapid and consistent than had been
anticipated and occurred with step changes as small as 0.12. The average static re-
sponse showed no systematic bias as a function of probability and had an RMS error
approximately equal to that of a 17-sample average.

Two simple mathematical models are derived to provide quantitative compari-
sons with the subjects' data. A descriptive model is also derived which satisfies
some basic properties of the task behavior. The parameters for this model are se-
lected for two specific experimental situations.

Human decision tasks can be described as static or dynamic. In a dynamic decision task,

some of the relevant stimuli vary as a function of time, or of past decisions, or of both. The

decision maker must keep track of these changes in order to perform satisfactorily.

This experiment examines the human ability to follow or estimate a time-varying probabil-

ity, which could be an important input to a dynamic decision task. The experiment attempts to

isolate the estimation of the probability from the use of the estimate in making decisions. The

task selected was the estimation of the mean of a binary (Bernoulli) distribution. Samples (0 or

1) from the distribution were displayed sequentially, and the subject continuously estimated the

distribution mean, which varied with time. The experiment is described in detail in Section 2.

The study of probability estimation isolated from decision making is important for two

reasons. First, in decision making under uncertainty, the estimation of probabilities is always

at least an implicit part of the task. A decision maker's ability to produce decisions which

maximize expected value will depend directly on his ability to estimate the probabilities of the

various alternative courses of action.

1i
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Second, there is an applied interest in the human ability to turn uncertainty Into probability.

In many systems involving stochastic inputs, It is relatively easy to automate the application of

decision rules. It it far harder, however, to find automatic means for supplying the probabil-

ities and payoffs necessary for the application of the rules. Probability estimation, then, is a

candidate for inclusion as a human task in semiautomatic information processing and decision-

making systems in which the subsequent choice of a course of action is performed automatically.

RESEARCH ON ESTIMATION AND PREDICTION

Human binary-choice behavior has been studied extensively. This experiment complements

previous studies by isolating the estimation function and by using changing probabilities.

Most studies of human binary choice do not include estimation as an explicit part of the

subjects' task. These studies usually generate prediction data, which are then averaged over

blocks of trials (decisions, choices) to produce prediction frequencies. A prediction frequency

of 0.67 on trials 121 through 150 would indicate that the predictions during these 30 trials were

distributed about two to one between the two choices. The subject may or may not be told the

correct choice after each trial. The correct choices are drawn in some manner from a sta-

tionary binary distribution.

Examples of these experiments, often called probability learning experiments, are reported

by Grant, 1953 [11; Hake and Hyman, 1953 [2]; Hake, 1954 [3); Estes, 1957 [41; and Neimark and

Shuford, 1959 [5]. Most of these studies report prediction frequencies asymptotically approach-

ing the frequency of correct choice or the generating probability. This phenomenon has been

named "probability matching." This behavior is not optimum. The optimum strategy, under

instructions to maximize correct choices, is to predict consistently the more probable event.

This event can be inferred from the relative frequency of previous events.

Behavior significantly different from matching has been reported by Gardner, 1959 [3], and

Edwards, 1961 [7). The number of trials may have been insufficient in some of the experiments

in which matching was found. An unpublished experiment by Tannenbaum and Edwards at The

University of Michigan indicates that the amount of reward for a correct choice interacts with

the prediction frequency. Some subjects used near-optimum strategies.

A few studies have looked at the estimation ability of the binary decision maker. Grant [1]

reports an experiment by Hornseth in which the subject was asked to peuas, at the end of 150

choice trials, which event had been the more frequent. The prediction frequencies for the last

30-trial block were close to the matching level. The data on guessing the overall frequency

were plotted as the percentage of correct guesses. These data showed that the percentage of
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correct guesses at a particular event frequency was higher than the event frequency (i.e., an

event frequency of 0.70 would be guessed to be the more frequent over 70 percent of the time).

Grant concludes from this experiment and presumably from other probability learning ex-

periments that the processes of estimation and prediction are distinct, and that prediction is the

more accurate. The processes may indeed by distinct, but the accuracy of estimation was not

measured by Hornseth's experiment.

Hake [31 surveys a major portion of the probability learning literature (including experi-

ments by Estee, Grant, Hornseth, Hake, and Hyman), and concludes that estimation is not ac-

curate enough to be the basis for binary predictions.

Subjects in these experiments should have based their choices on estimates of the event

frequencies or generating probabilities. To conclude that the non-optimum performance was

an indicator of inaccurate probability estimates is unjustified, however.

Neimark and Shuford [51 included estimation as an explicit part of the task in a probability

learning experiment. Besides making a choice at each trial, some subjects were required to

estimate the proportions of the past events. The event frequency was 0.67. These subjects

gave unbiased estimates and had prediction frequencies significantly higher than the matching

level, whereas subjects who only predicted produced frequencies at the matching level. These

results suggest that explicit estimation imptoved prediction.

Erlick [8] looked at estimation without a decision task. He presented 100 binary events at

a rate of five per second and asked for an estimate of the more frequent event and for an actual

estimate of the event frequency on a continuous scale. Four event frequencies were used: 0.50-

0.50; 0.48-0.52; 0.45-0.55; and 0.43-0.57. The data indicated that the more frequent event was

selected correctly 75% of the time when the event-frequency difference was approximately 0.08

(0.46-0.54). For 0.50 and 0.52, the median estimate of the frequency was within 0.011 for 0.55

and 0.57 the median estimate was about 0.02 high.

All of the experiments reviewed above used stationary processes to generate the binary

events. A few experiments have used a dynamic generating process, but since prediction was

the required task in all of these, they give only indirect evidence on estimation.

Grant [1] reports an experiment in which the generating probability changed periodically

as a square wave. The probability values always differed by 0.50 with higher values: 1.00, 0.90,

0.80, and 0.70. The period was 40 events, and two and one half cycles were presented. A pre-

diction frequency was calculated by averaging over five trials and about 40 subjects. This pre-

diction frequency followed the cyclic change only when the higher probability was 1.00 or 0.90,

and reached 0.95 in 20 trials at 1.00, and 0.70 in 20 trials at 0.90. Apparently no systematic

3
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performance changes occurred during the two and one half cycles. The subjects were evidently

not instructed about the nonstationarity of the generating process. Such instructions would prob-

ably have had an appreciable effect.

Goodnow and Pettigrew [9] performed a binary prediction experiment in which a change

from 0.50-0.50 to 0-1.00 occurred. They found that the response to such a change was more

rapid when the subjects had initially experienced a 0-1.00 series prior to the 0.50-0.50 series.

Again, however, no specific instructions were given concerning the nonstationarity of the gen-

erating process.

In both Grant's and Goodnow's experiments there is evidence that a change in the generating

probability of 0.50 will produce an appropriate change in the prediction frequency if the change

is to an extreme probability. These extreme probabilities (1.00 and 0.90) evidently represent

changes which are obvious even when the instructions induce no expectation of change.

Flood [101 discusses the strategy of a subject who may not be convinced that the probabil-

ities are stationary. No particular results were obtained in an experiment designed to induce

certainty versus uncertainty in the stationarity of a stationary generating process.

The human ability to estimate directly the magnitude of a stationary binary probability is

uncertain. Most experimenters have postulated estimation only as an intervening variable be-

tween the display and a decision task. Decision behavior was improved in one experiment by

including explicit estimation in the task. Two questions seem appropriate: what role does esti-

mation play in a decision task, and how well can this estimation be performed? The experiment
reported here sheds light on the second question as well as providing a fairly comprehensive
look at the continuous estimation of dynamic probabilities.

2
TIM EXI'IHMDI

2.1. THE TASK

The task studied in this experiment was to estimate the mean of a binary distribution as

samples (individual drawings) from that distribution were sequentially displayed. This task

was selected for two reasons. First, it is completely described by one parameter, its mean.

It is thus easily understood by people unfamiliar with the mathematical aspects of probability.

Second, it can be readily related to the literature on binary decision and estimation, discussed

in Section 1.

The display and response mechanisms, shown in Figure 1, were designed for convenient

and effective control and interpretation. As the subject sat at the apparatus, samples from a

4
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Mial, lnifcating Lover
Position, 0-100 in

(a)

/0

38" Neon No. 51 Bulbs

Illuminated Scale
jj and Pointer,

7" 50 Divisions;
_____10 Main,

' ~ ~ - ~ ~ Marked 0, 10,I:- ]
Digital Encoder
and Potentiometer

[ •at, Postoig

Pointer

(b)

FIGURE 1. TRACKING CONSOLE. (a) Sketch. (b) Solhestic. The flash had a duration of approzlmdaely
0.020 eoonds, The intensity was Adjusted to provide a clear indicator without glare. The room illumina-

tion was low.
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binary distribution were presented to him at a fixed rate by two flashing lights. He reported

his estimate of the mean of the distribution by moving the tracking lever so that the illuminAted

dial beneath the lights would indicate it. Thus the apparatus was a continuous-response mechan-

ism -appropriate for the estimation of a continuously varying stimulus.

The lever was free to move between stops at 0 and 100 on the scale. The smallest scale

division was 2. The variable error of the pointer was about one half of the least division, cor-

responding to a probability change of 0.01. A main scale division occurred at every fifth small

division and was marked 0, 10, 20,..., 90, 100. The lever and associated mechanisms con-

tained enough Coulomb friction to retain a setting without constant force; neither springs nor

viscous friction was used.

The position of the lever was recorded by two means, Friden punched paper tape and a

Sanborn continuous-strip recorder. The paper tape was punched in a Grey, or cyclically per-

muted binary code using six channels of an eight-channel punch to encode 101 symbols, 0 through

100. Pilot studies indicated that the rate of output sampling necessary to recover the response

information depended on the flash rate, and that a response sampling rate equal to the flash

rate would be adequate. Thus a sample was taken every two seconds at the slowest presentation

rate, 0.5 flash per second, and every 0.125 second at the fastest presentation rate, 8 flashes per

second. The punched-tape record was later transferred to IBM cards on a modified IBM tape-

to-card converter, and the data analyzed on an IBM 709 data processing system. The Sanborn

records were used in making qualitative judgments about the response and in selecting appro-

priate criteria for the computer analysis. They also permitted continuous monitoring of the

task as it was performed.

The subject and his console were isolated in a small room. The subject wore noise-insu-

lating ear muffs. He had a two-way communication system with the experimenter. A low-level

white noise was presented by the earphones during the experimental run. When the experimenter

spoke to the subject, the noise was automatically switched off. The subject's microphone was

always on, and comments during the experimental run were permitted.'

The task has a strong resemblance to a standard unidlmensional manual tracking task.

The main difference is the presentation of the target: instead of being displayed explicitly as

a dot or a line, it exists only as a parametric description of the method used to select the flash

sequence. In this experiment the generating process was time-variant, and the target could be

defined as the mean of the distribution from which the last flash was drawn. It is impossible to

recover the precise target from the information available to the subjects. The cursor, or 0-100

'Few comments were made; most of these were not printable.

6
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dial pointer in this case, is pointed at an estimated value of the target. The system is essentially

open-loop, since the lack of an explicit target prohibits the formation of an error signal. The

dynamics are almost entirely in the mental computation; there was no indication that motor

skill was a limiting factor.

The use of a tracking lever as a response means is unique in research on probability esti-

mation. It is appropriate to the task and permits an easy understanding of the response scale

by the subjects. Both end points are well fixed, in the same sense that impossible events and

sure ones are fixed in value on a personal or subjective probability scale. The 50 point on the

scale might also be considered as an anchor point, since all subjects clearly understood that

50% meant equally frequent flashes.

2.2. INPUT SELECTION

The input probability changed in a series of discrete steps. This input form permitted vis-

ual, qualitative interpretations to be made from the data in addition to the more extensive anal-

ysis done by the computer. The input form also permitted static as well as dynamic meas-

urements to be made. The step-change sizes and their directions, as well as the number of

flashes between steps, were selected randomly from a finite set of values. The sequence of

steps so generated is called a problem. The mechanism for the generation of the sequences

is described in detail in Appendix A.

Preliminary investigations revealed that step changes ranging from 0.06 to 0.64 in eight

values would adequately cover the interesting range of probability change.' The number of

flashes between step changes was selected from a set ranging from 34 to 89 flashes; the smallest

number of flashes required to minimize interaction between successive step changes was 34.

The range between 34 and 89 was considered sufficient to prevent any performance improvement

due to the learning of inter-step length. A step change and the flashes until the next change are

called a subproblem.

2.3. FLASH SERIES GENERATION

The flashes were drawn from finite populations without replacements. The population size

was an experimental variable and is discussed below. Finite populations were selected to fix

the average value of the flashes for each subproblem. The effects of finite population sampling

on variances are shown in Appendix B.

'A pilot experiment with a simplified apparatus was run before the main console was built
in order to establish the general form of the response and reasonable ranges for the independent
variables. It is discussed in more detail in Section 3.

7
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2.4. EXPERIMENTAL VARIABLES

Five independent variables were used in the experiment: the rate at which the flashes were

presented; the magnitude and sign of each step change; the probability after the step change; a

constraint on the randomness of the flash series; and subjects. The number of flashes between

step changes was not studied as a variable. The variables had the following values:

Rate: 0.5, 1.0, 2.0, 4.0, and 8.0 flashes per second (fps)

Step size: 0.06, 0.12, 0.16, 0.18, 0.24, 0.32, 0.48, 0.64 (both + and -)

Probability: 0.02, 0.08, 0.14, 0.18, 0.26, 0.32, 0.34, 0.44, 0.50, and the complementary

values between 0.50 and 1.00

The step changes and probability valunes were arranged in two problem types, described in de-

tail in Appendix A. For one type, the small-step problems, the mean step change is approxi-

mately 0.15; for the other, the large-step problems, the mean step change is approximately 0.40.

Both types contain the entire range of probabilities and are symmetric about 0.50.

The constraint variable had two values, leading to the random and the constrained problem

types. The random problems were generated from finite populations which had the length of the

respective subproblems being generated. These finite populations were thus of size 35 through

89 flashes. These sizes were considered large enough to yield experimental results fairly close

to those which would result from infinite populations.

The constrained problems were generated from finite populations of 17 flashes. The lengths

of the subproblems were arranged in whole-number multiples of 17: 34, 51, 78, and 85 flashes.

It was assumed that this constraint would be sufficient to indicate those aspects of performance

that con'ctraint would affect. It is not a severe enough constraint to be readily perceived from

inspection of the flash series, however. The same series of steps and probabilities were used

in the rndom and in the constrained problems.

Each of the four subjects performed the task in 15 sessions, and saw the same series of

problems in the same order. Each session lasting for about an hour, consisted of two or three

problems separated by a short rest period.

Rates, small- and large-step problems, subjects, and constraints were exhaustively com-

bined. The order of presentation was chosen at random under the constraint that the tracking

sessions were of about the same length. (Appendix C gives the sequence used.) The pilot ex-

periment had indicated that about 25 minutes, at two flashes per second, was the maximum

time that a subject could be expected to track without a significant decrement in his perform-

ance. The problems presented at 0.5 and 1.0 flashes per second were given in four and two

8
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separate sessions, respectively, in order to limit all sessions to a maximum of 25 minutes of

continuous tracking.

2.4. TASK INSTRUCTIONS

Careful attention was paid to the instruction of the subjects prior to the recorded experi-

mental sessions. This effort was repaid by an excellent consistency in the tracking behavior

of the eight subjects, four in the pilot and four in the main experiment. (The standard instruc-

tions used are shown in Appendix D.) These served only as the initial formal introduction,

however. Actually about 10 minutes was spent in discussing the task to be performed and the

purpose of the experiment. Instruction was concluded when the experimenter was satisfied

that all important concepts were understood.

A 45-minute practice session preceded the 15 hours of data recording. During this session,

the response was continuously monitored and the subject was assured of the quality of his per-

formance. The lack of error feedback made it difficult for the subject to evaluate his own per-

formance until he had some experience with the task.

The instructions were as complete as the subject seemed to need in all but one important

area. He was told nothing about the dynamics of the input sequence, except that there would be

changes in the probability. He was told to expect both rapid and slow changes. He was instructed

that the pay he would receive would be a constant rate per minute of tracking minus the accum-

ulated squared error during the same interval. The amount was computed automatically on an

analog computer operating during the tracking session. (The circuit used for the pay scheme Is

shown in Figure 2.)

FromTape 1 1 1 1

Error 2 (Error) 2 5 (Error)2

1001 
Payoff = K f(E)2

FIGURE 2. ANALOG COMPUTER CIRCUIT FOR PAYOFF
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3
IXPERIMENTAL RESULTS

3.1. THE PILOT EXPERIMENT

A pilot experiment was run prior to the main experiment in an attempt to answer three

questions. The first concerned the general form and quality of the response. The responses

found were qualitatively similar to the response plotted in Figure 3. Both the response to

change and the estimation of probability were better than expected.

II
False Alarms put

0 Convergence

•'•'•Detection0 1

0 10 20 30 40 50
SAMPLES

FIGURE 3. A TYPICAL RESPONSE TO A SUBPROBLEM

The second question answered by the pilot experiment concerned changes in response with

continued performance of the task, reflecting learning or fatigue. One problem was presented to

the four subjects in each of six sessions about two days apart. There was no indication of a

significant change in performance after the first session. To test for specific problem learning,

the problem which had been presented for six sessions was presented again, but backwards. No

decrement in performance was observed. It was concluded that no specific problem learning

had occurred. None of the subjects recognized that the problem had been the same in each of

the six sessions, nor were they able to describe the changes in the probabilities. Tracking

sessions up to 15 minutes caused no particular fatigue or boredom, and it was concluded that

sessions of 25 minutes would be permissible on the more isolated, impressive, and comfortable

console used in the main experiment.

The third question answered by the pilot experiment concerned the kind and amount of

instruction needed to bring the subjects up to a reasonably consistent level of performance.

The instructional method described in Section 2 was the result. The subjects in the main expert-

10



Insalivs of Science and Technology The University of Michigan

ment performed consistently after the instruction and practice. (Appendix E presents two

interesting exceptions.) The important task learning evidently occurs during the first few minutes

of performance, and the 45-minute practice session was sufficient.

3.2. RESPONSE MEASURES

The response measures were chosen after study of the Sanborn records from the main

experiment. The form of these responses was the same as that in the pilot experiment (shown

in Figure 3). The response was characterized by fairly rapid changes separated by periods of

little or no change. This discontinuous form indicates that the behavior might be described in

terms of a series of decisions concerning changes in the probability. A descriptive model with

this characteristic is developed in Section 4. Several of the response measures were chosen to

fit this response form. All of the response measures refer to individual subproblems. The

following measures were calculated.

(a) DETECTION, D: the number of samples from the step change to the point where the

response has changed 0.05 in the direction of the new probability from its value at the point of

the step change. If Rn is the response at point n in a subproblem which starts at n = 1, the point

of detection is the point where R. = R0 * 0.05 (the plus sign indicating an increasing step and

the minus a decreasing step).

(b) NO DETECTION, D: the number of subproblems in which detection did not occur; that

is, Rn never came to within 0.05 of the new probability.

(c) CONVERGENCE, C: the number of samples from Qs step change to the point where

the response is within 0.05 of the new probability. The point of convergence is that at which

Rn = P * 0.05, where P is the probability following the step change. The point of convergence is

the first entry into this region from either side.

(d) NO CONVERGENCE, C: the number of subproblems In which convergence did not occur;
that is, Rn was always outside the 0.05 region about P.

(e) INITIAL CONVERGENCE, IC: the number of subproblems in which the response was
within the convergence region about the new probability at the point of the step change. P - 0.05

9 R0 2 P + 0.05.

(f) IM'OT MEAN SQUARE ERROR, RMSE: the square root of the mean square error over

the entire subproblem. Error equals the response minus the probability. The response was

11
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measured on a 0 to 1 scale corresponding to the probability measure, and the error can thus

be considered an error in probability. For a subproblem of length M,
F1n-M )11/2

RMSE -= (Rn - P

(g) ROOT MEAN SQUARE ERROR AFTER C, RMSEc: the square root of the mean square

error from the point of convergence to the and of the subproblem.

I1  n-M 2 1/2
RMSEC = _ (Rn - P)

n-C+1

This measure and the following two were made only when either cotivergence or initial conver-

gence was measured.

(h) MEAN ERROR AFTER C, MEc: the mean error from the point of convergence to the

end of the subproblem.

1 n=M
MEC H ' (Rn" P)

(t) FALSE ALARM RATE, FAR: the number of times per sample that the response left

the 0.05 convergence region between the point of convergence and the end of the subproblem.

If P - 0.05 1 Re.1 a P + 0.05, and Rn P-0.05 or R > P + 0.05, then the point n would be a

false alarm point.

Detection and convergence were measures designed to describe the discontinuous response

form. The 0.05 criterion used in these measures was selected after an extensive study of the

data. In about 80% of the subproblems, a sudden response to the new probability occurred

shortly after a step change. This movement was interpreted to be the result of the perception

of the change in the probability. The 0D5 detection criterion was selected as measuring this

point with fair consistency. For step changes greater than about 0.15, this measure is relatively

insensitive to the choice of the 0.05 criterion since the sudden response was characteristically

0.10 or greater.

Convergence is more dependent on the selection of 0.05 as a criterion. The point of con-

vergence was most useful, however, in determining the beginning of measures 7, 8, and 9. These

measures were all averaged over flashes, and the location of the convergence point did not

affect their values. Detection and convergence, as measured with the 0.05 criterion, are not

particularly informative for the smallest step change, 0.06.

12
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Measures 7, 8, and 9, the three starting at the point of convergence, indicate the subject's

static estimation ability. The subject is operating under what might be called a dynamic set,

however; that is, he has an expectancy for changes in the probability. Changes in his responses

during this period could be called microstructure tracking, since the subject was not aware that

the probability was constant. No measures were made of the persistence of this microstructure

tracking on the longer subproblems. This behavior might begin to diminish with long presenta-

tions of a constant probability.

RMSE was the only measure made on all subproblems regardless of their response form.

It indicates the overall quality of performance. RMSE is a common measure in continuous tasks

of this kind, largely because it is easily derived and manipulated in mathematical expressions.

3.3. DATA ANALYSIS

There was one subproblem for each rate, step size, step direction, probability, constraint,

and subject, 3440 in all. The combinations of variables presented here were judged to be the

most informative set among the total available from the computer analysis. These quantitative

performance measures were the intended output of this experiment, and since no testable

hypotheses were generated, no tests of statistical significance were made.

3.4. EXPERIMENTAL DATA

3.4.1. DIFFERENCES BETWEEN SUBJECTS. No qualitative differences existed among

the four subjects used in the main experiment. The four subjects in the pilot experiment be-

haved similarly to those used in the main experiment and to each other. Inspection of the data

indicated that for general performance information, it would be best to average the data over

subjects. (Appendix F presents some of the subject-by-subject data.)

3.4.2. DETECTION, D. Figures 4 through 7 show the effects of the independent variables

on detection. Since the data on step direction show no appreciable difference between positive

and negative directions, they are averaged together in all figures. The interaction of step size

and rate shown in Figure 4 shows the most interesting relation found. Here detection decreases

fairly linearly with step size and increases fairly linearly with the logarithm of rate.

The linear increase in detection with the logarithm of the rate probably reflects a combina-

tion of factors influencing the response. A small linear increase with rate would be caused by

a constant reaction and movement time. For the usual tracking tasks, this might be expected

to be on the order of 0.5 seconds and to yield a lag of 2 flashes at 4 fps and 4 flashes at 8 fps.

13
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FIGURE 4. DETECTION AS A FUNCTION OF FIGURE 5. PERCENTAGE OF SUBPROB-
STEP SIZE AND FLASH RATE. Small- and LEIS IN WHICH "NO DETECTION" OCCURS,
large-step problems are plotted separately, AS A FUNCTION OF STEP SIZE AND FLASH
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large from 0.16 to 0.64. Detection is mesa- lems are plotted separately, the small extend-

ured in flashes. Ing from 0.06 to 0.24 and the large from 0.16
to 0.64.

The more important factor Is probably a change in the method of performing the task as rate

changes. At rates of 0.5 and 1 fps the subjects reported counting the flashes at times, occasion-

ally counting the number of flashes of the lower frequency and comparing this to an estimate

of the total number of flashes. They did not use any procedure of this sort consistently, however,

at least not one apparent to them. They all reported that the rate of 2 fps was the most difficult.

Evidently the methods which they had used effectively at 0.5 and 1 fps became difficult if not

impossible at 2 fpe. Beginning at 4 fps it is clearly impossible to respond to separate flashes

and the series is probably perceived in groups of flashes. The task becomes similar to a con-

tinuous tracking task at these rates. Reese [1I] postulated that subjects' mechanism for counting

light flashes would change at about 4 flashes per second.

Figure 4 shown an effect due to the presentation of the step changes in two separate series,

the small- and the large-step problems. There is a region of overlap in step size between

these two problems. The smallest change in the large-step problem is 0.16, and the largest in

the small-step problem is 0.24. In this overlapping region the small-step problem yields detec-

tice of from one to six flashes higher than the large-stop problem at all rates. The subjects

14
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Detection Is measured In flashes, tending from 0.06 to 0.24 and the large from
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were evidently modifying their tracking method according to the type of problem being presented.

The large- and small-step problems were ordered randomly, of course, and the subjects had no

prior indication that there were two problem types. This change is perhaps not surprising

considering the difference between the two problem types. The average step changes were 0.15

in the small-step problem and 0.40 in the large-step problem. Step changes of about 0.30 and

larger are readily noticed.

The subjects appear to have made larger, more decisive .response changes on the large-

step problem than on the small-step problem. This more responsive behavior is appropriate in

quickly reducing the large errors following the larger step changes.

Figure 5 shows the percentage of "no detections" for the total number of subproblems, as

a function of step size and rate. About 90% of the "no detections" occurred with the combination

of rate above 4 fps and step size below 0.15. Some of the "no detections" were probably caused

by lapses of attention. At 4 fps a 42-flash subproblem is over in 11 seconds. In 25 minutes of

continuous tracking a few 11-second lapses are certainly to be expected.
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Figure 6 shows the effect of probability on detection. Perhaps the most interesting finding

is that detection is not appreciably smaller for the extreme probabilities. In Section 4 it will

be seen that responses generated by simple running averages produce detections which are

similarly- independent of probability.

The variability among a set of detections of a particular step size and rate will depend on

the probability, however. Detections of central probablities, those near 0.5, will have more

variability than detections of extreme probabilities, those nearer 0 or 1.

The effect of the flash generation constraint on detection is shown in Figures 6 and 7. Con-

straint has no particular effect on average detection, but like probability it affects the variability

of a set of detections. The constrained problems yield less variable detections.

3.4.3. CONVERGENCE, C. Figures 8 through 12 show the effects of the independent vari-

ables on convergence. The interesting effects are again with step size and rate. The effect of

rate on convergence is similar to its effect on detection; a linear increase in convergence with

the logarithm of rate. The effect of increasing step size is to increase convergence, although

the increase is small. The number of flashes between detection and convergence increases as

step size increases. This probably reflects the size of the response more than any other factor.

Most of the subproblems show a response successively approaching the new probability rather

than one that overshoots.

Convergence shows a difference, similar to that noted in detection, between the small- and

the large-step problems in the region of overlapping step size.

"No convergence," expressed as a percentage of subproblems, is shown in Figure 9. 'No

convergence" remains relatively insensitive to changes in step size except for the largest step,

0.64, where it is zero. It is approximately 10% for the large-step problem and 12.5% for the

small-step problem. "No convergence" rises sharply with increasing rate, reaching about 26%
at 8 fps. This is consistent with the data, which show convergence equal to 35 flashes at 8 fps,

about the length of the shortest subproblem.

"Initial convergence" has a high of 35% for a step change of 0.06 and goes to zero for steps

of 0.48 and 0.64. It increases slightly with rate from about 8 to 12%.

The relationship between probability and convergence is shown in Figure 11. Convergence

is relatively insensitive to probability as was detection.

The effects of constraint on the sample generation are shown in Figures 11 and 12. Again,

as with detection, there is little if any effect.
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3.4.4. ROOT MEAN SQUARE ERROR, RMSE. This measure was introduced to provide a

single overall indicator of the task performance. The most informative variation of RMSE is
variation with rate, plotted in Figure 13. RMSE increases linearly with rate from I to 8 fps.

It is interesting to evaluate this performance measure on a time basis, as might be done when

the estimation must take the shortest time possible. Dividing RMSE by fps yields values of

error-seconds per flash which decrease as rate increases, going from 0.134 at 1 fpe to 0.022

at 8 fps. This decrease might well continue with even higher rates, as the task becomes the

tracking of the relative brightness of the lights. Either the limitations on the judgment of rela-

tive brightness or simple reaction time would finally limit the performance. This performance

index must be viewed with caution. The error itself has a meaningful upper bound at the level
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FIGURE 13. ROOT MEAN SQUARE ERROR OVER THE WHOLE
SUBPROBLEM AS A FUNCTION OF FLASH RATE

where the lever is left stationary or is moved in some manner independent of the flashes. As

this error level is approached, further increases in rate would continue to decrease the index of

error-seconds per flash but the index would have little meaning.

The following three measures were made from the point of convergence-or, If initial con-

vergence occurred, from the beginning of the subproblem-to the end of the subproblem. They

are therefore measures made on an average of 85 to 90% of all of the subproblems and on about

95% of those subproblems with step changes above 0.15 at rates below 4 fps.

3.4.5. MEAN ERROR AFTER CONVERGENCE, MEC. The mean error Is shown as a func-

tion of probability In Figure 14. The average estimate is essentially unbiased at all probabilities.

The largest error is smaller than the least scale division on the subject's response indicator,

0.02. Mean error was not significantly affected by rate, constraint, step size, or subjects.

This finding contradicts a body of conjecture based in part on the results of static estima-

tion and choice experiments. Neither the overestimation of high nor the underestimation of

low probabilities appears. The excellence in static estimation was undoubtedly due at least in

part to the two distinctive features of the task, the dynamic estimation and the use of the track-

ing lever as the response mechanism.
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FIGURE 14. MEAN ERROR AS A FUNCTION OF PROBABILITY. This measure
is made from convergence to the end of the subproblem.

3.4.6. ROOT MEAN SQUARE ERROR AFTER CONVERGENCE, RMSEC. RMSEC is shown

in Figures 15 through 17. The only independent variable not affecting RMSEC is step size. This

indicates that the period after the point of convergence is not affected by step size. The con-

straint on the generation of the flashes reduced the RMSEC by about 0.014 and does not appear

to interact with either step size or rate. RMSEC decreases with increasing rate from 0.5 to

2 fps and thereafter remains relatively constant. Considered together with the data indicating

smaller detection values at the lower rates, it is highly probable that the number of decisions

concerning changes in the probability on a per flash basis Is highest at the lowest rate. Thus

the additional decision time available at the lower rates permitted smaller detection values but

resulted in larger RMSEC when the probability was constant.

The effect of probability on the RMSEC is shown in Figure 17. The "random" problems are

consistently higher than the "constrained" problems at all probabilities. The N = 17.3 line is

the RMSE, or standard deviation, of a 17.3 flash average. The subject's response is about

this good or better at all probabilities.

3.4.7. FALSE ALARM RATE, FAR. The number of false alarms per flash is shown in

Figures 18 through 20. Its behavior is similar to RMSEC. It is similarly insensitive to the

size of the step change. Increasing rate causes a decrease in FAR up to 4 fps with an apparent

leveling off above 4 fps. These data lend additional support to the hypothesis concerning an

increase in number of decisions per flash at the lower rates. False alarms can be considered

as indicating decisive changes in the estimate.

'Variation among subjects was high for 4 and 8 fps. See Figure 28, Appendix F.
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FAR remain constant over the entire probability range with the exception of the extreme

values, 0.02 and 0.96. These probabilities were usually estimated as 0 or 1, with an excursion

away from 0 or I only after an occurrence of the Infrequent fluh. Since FAR did not change

with probability, It appears that the rate of "decisive" movements (greater than 0.05 from the

probability) remained constant for all probabilities. The reduction in RMSEC as the probability

tends to extreme values therefore indicates that the time spent at these "erroneous" estimates

decreased with extreme probabilities. This hypothesis is supported by observations made

during the tracking sessions. The lever movements appeared larger although less frequent at

the more extreme probabilities. The increase in magnitude evidently compensated for the

decrease in frequency to maintain the FAR at a constant level.

The constrained series produced a slightly higher false alarm rate than the random series.

The constrained series has a greater number of runs of right or left flashes and would be ex-

pected to yield a higher decision rate. All of the FAR data will be dependent on the false alarm

criterion level. A larger criterion could well reverse the constraint finding, for example, since

the random series probably produces larger decision movements than the constrained series.

3.5. SUMMARY OF RESULTS

The response to a step change in probability can be described in three regions: the period

before any response to the change, before the point of detection; the period before the conver-

gence on a new estimate; and the period from the convergence point to the end of the subproblem.

These regions were defined mathematically as functions of probability response form and

somewhat arbitrary constants in order to achieve a complete description of the response.

Detection increases with increasing rate and decreases with increasing step size. The

range was from 4 to 24 flashes for a rate range of 0.5 to 8 flashes per "scond and a step size

range of 0.06 to 0.64. Detection was approximately nine flashes for a step of 0.32 at 1 fps.

Convergence increases with both rate and step size. The range was from 11 to 35 flashes

for the same step and rate ranges stated above. Convergence was approximately 15 flashes

for a step of 0.32 at 1 fps.

Both detection and convergence were independent of the constraint imposed on the genera-

tion of the flash series. Both were independent of probability.

After the point of convergence the average estimate was unbiased at all probabilities. This

unbiased estimate had an RMB error, or standard deviation, of about 0.06.

The overall task performance was measured by the RMB error throughout the subproblem.

RMSE increased linearly with rate from 0.135 at 1 fps to 0.180 at 8 fps.
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4

MATHEMATICAL MOAIU

Three mathematical models will be derived in this chapter. Two of these will be called

normative, since the purpose for their derivation is to provide standards with which to compare

the data presented in Section 3. The third is a descriptive model designed to simulate the human

performance.

The somewhat arbitrary forms of the normative models, and the optimized parameters

used, were selected to provide the best RMS error fit to the various inputs used In the prob-

ability tracking task. One form selected is a constant weighted average over a finite number

of past flashes. The simplicity of this model makes it ideal for intuitive comparisons with the

subjects' performance. The number of flashes in the running average ts selected to give the

best fit. The other model has geometrically decreasing weight for flashes extending into the

past. This model is more appealing from the standpoint of response to the step inputs. It also

corresponds to assumptions often made concerning the human immediate memory function. The

best fit is found by selecting the appropriate geometric ratio.

More sophisticated linear models, and certainly some nonlinear ones, would undoubtedly

perform this task with a lower RMSE than the two models selected. The value of more complex

models for providing simple standards is marginal, however.

The descriptive model was derived from thoughts on how the subjects performed the task.

Its form arises from the qualitative aspects of the data and from observations of the subjects'

behavior. It has four parameters, which are adjusted to yield a minimum RMSE fit to a sub-

ject's response.

The normative models to be considered have the form

taN
r(n) - T wiseni+l (1)

where r(n) is the model's response or output at the point n in the sample series, and wi is a

weight attached to the sample %ni+I. The response at n is thus the weighted average of the

sample at n and its N - 1 immediate predecessors. This is an averaging or smoothing model

intuitively appropriate to this task. It is limited to samples at and prior to the response point,

considering only a finite number of these, and is therefore physically realizable. w, is not a

function of n and could be described as sample-invariant.

The random variables sn are drawn from an infinite population and are independent. They

have values 0 or 1, corresponding respectively to left and right on the subject's display. The

probability of a 1 is P, and the probability of a 0 is therefore 1 - P.
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When the N samples are ail generated from a static distribution described by the probability

P, it It desirable that the estimate be unbiased or that

r n - P (2)

where r(7n Is the expected value of r(n), an ensemble average. This simply requires that

t-N
=:1 (3)

The responses of the two model forms will be derived for a subproblem beginning with

n 1 as the first sample of the new probability and ending with n - M. The previous probability

will be P 1 and the subproblem probability P 2. The step change is therefore P 2 - P1 . For

N < n < M the response will be called steady-state, since the samples are all from a static dis-

tribution. For 1 < n < N the response will be called transient.

4.1. A MODEL WITH GEOMETRIC WEIGHTING

The first model to be considered has a weighting function

i-1
w= ar (4)

where a and r are constants and 0 < r < 1. This function assigns geometrically decreasing

weights to the samples. Limiting r to the range 0 to I confines the function to one assigning

monotonically decreasing weights to samples receding from n.

The value of N, the number of samples included in one computation, will be selected as a

number large enough to assure the relative unimportance of the weight at n = N, arN'I, com-

pared to the weight at n a 1, a. This merely implies that the function's memory extends smoothly

to the point of essentially complete "tforgetting." The exact value of N in any particular model

of this form is relatively unimportant to the considerations that follow. It will simply be

assumed that

rN << 1 (5)

and all quantities of this magnitude will be dropped.

Of primary interest is the selection of r to produce an optimum model, that is, one having

the least mean squared error. This particular measure of performance was the same one used

in measuring of the subject's performance and in the payoff scheme.
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The constant a Is selected to satisfy Equation 3, which becomes

W 2
-ar a+ar+ar +... +ar a'-- 1 (6)

jul

or

a-l-r,r 1 (<)

We will be concerned with two quantities: r(- , the expected value of r(n) at the point n,

and a(n), the variance of r(n) at the point n. These are ensemble averages.

For the expected value of r we have

r- = E{ Wisn-i+ (8)
=I l

and since the wt are constant over the ensemble,

t=N i=N

r(n) wt E(sn l)= wt (9)

For the step function input, r-n) will depend on P1 and P 2 during the transient phase and on P 2

along during the steady-state phase.

For 1 < n < N we have

r(n) - (1 - r) n ( - r) P [I 1- r) (I" rn r

= (1 - rn) P 2 + rnP1

a -P2 " rn(P 2 - PI) (10)

For N < n < M,
"r = P2  (11)

For the variance we have the variance of the sum of the wiSeh_+1 terms. Since the s are

independent, we have the sum of the variances of the individual terms
2 222422 2(N-1) 2

a2(n) a a 2(n) + a2r2(n - 1) + a2 r 4a2(n - 2) +... + a r o1(n - N + 1) (12)
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where v:(n) to the variance of the smple . Since o2 (n) P(I - P), where P ts the probability

with which sn was generated, a(n) wil be a constant for consnt P, and in particular t will
have two values during the transient phase, a = PI(1 - P,) and a2 2 P

1 ~ 2 P2 (l - P2 ).
For the transient phase we then have

2 (1 - r 2n) L (l-r)

gI H- 2«1 n(2 0)] N< (13)

and for the steady-state phase,

02r(n)( - r) _2 (14)

We can now proceed with the formulation of the model's performance In terms of its mean
square error. The error during the transient phase can be written as

e(n) - r(n) - P2

= [r(n) - P2] + [r(-) - r(n)] (15)

and the squared error is then

e (n) = [r-n - P 212 + [r(n) - F--n] 2 + 2[r-'i - P21 [r(n) - r-•]) (16)

The expected value of the squared error Is then

2 [ 2l2 '
e (n) -[r +2 r(n) (17)

since [r(n) - P 2] is a constant for a particular n and E[r(n) - r-')] Is 0.

The average value of this mean square error over the transient phase of the subproblem

will be <or>T, representing the average over the ensemble and also over samples in the sub-
problem. We will then have

- @naN-- . , n=N -n 1  2 (18)

2n-i

28



Indiuwae of Science and Technology The University of Michigan

When Equation 10 is used, the first term on the right side of Equation 18 becomes

1 n=N 1 n=N
= - -P21- nl [rn(PI- P2)1

n-i n-i

(P1 - P2) 2 r2  N 1 (19)"I N 21 -, r' N < 1
N

When Equation 13 is used, the second term on the right side of Equation 18 becomes

2 n-N 1- _ r 2"r2n(2 a°2)J

n=1 n-i

r)2 r2  (2 2\]N
1 r.--2 r 2 2 ')1• • , - N (I- -A) _o -o,_-r (0

The average mean square error during the transient phase, <e I'>To i then

(P_ P )F 2  212 2(1
I P- 2  r2 1 r) 2~ (1r)2_a

-,.->+a -, ., (a: o (21)
T '_N r 12--T21

NO
The average mean square error during the steady-state phase 17>C is simply the variance

ar (n), Is given by Equation 14:

<* , (I1-r).2
le>SS (.I+ ) 2 (22)

The average mean square error over the whole subproblem is then

Z +M - N•( - r)

ST NT M-NT

/(l r)8" " -2 2r2 2

- (P 1-P 2 ) r (M -N) I1 0 H r (22)

( (1 -

(1- r 2L2
(1- 2 M( - r 21
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We are interested In the performance of this model over the types of problem given to the

subjects. The average mean square error over a problem Is given by

1,6 Mi{(PiI -Pt) 2 r 2  1 -rE2 r 2 ((a2~ )] (24)_< -> 1 T M,( 27 + r (24)

where M is the length of subproblem t, T is the total problem length in samples, and S ts the

total number of subproblems.

This expression can be simplified by making the following assumptions based on the meth-

ods used for generating the problems (Appendix A). The M were selected randomly, with-
out replacement, from a set of equally frequent values and assigned to the subproblems. The

sIm of a -_ a.1)/M therefore approaches zero for long series of subproblems. Similarly
the term Ma cr/ win approach simply a2/S. Equation 24 can therefore be written as

r 2  l-i=S1-r1. 2 (25)-rP .• --- I •T. % -P) + ,r"• .
1 - r t-

The large-step problem had values of [P1 - P 21 of 0.16, 0.32, 0.48, and 0.64, occurring in

12, 10, 8, and 6 subproblems respectively, yielding

i-S 2

it ("i-I - P) d 0.00251

a had values of 0.250, 0.224, 0.148, and 0.020 occurring in 6, 12, 10, and 8 subproblems re-
I

spectively, yielding

1 i-, 2SE a t " 16

T was 2241 samples and S was 36 subproblems. The average mean square error over the large-

step problem is then

-T> . 0.00251 -- +0.162 r (26)
1 -r

The small-step problem had values of IP1 - P 2 1 of 0.06, 0.12, 0.18, and 0.24, occurring in

12, 10, 16, and 12 subproblems respectively, and yielding

ii(Pi-I -P t)
2  0.000465

30l



Insitube of Science and Technology The University of Michigan

a2 had values of 0.250, 0.246, 0.217, 0.192, 0.120, and 0.085, occurring in 6, 10, 12, 10, 6, and

6 subproblems respectively, and yielding

2 I.. 0.194

T was 3000 samples and S was 50 subproblems. The average mean square error over the small-

step problem is then

00 r 2  1 - r
<0->sSP =0.000465 : + 0.194 1 (27)

1 -r

It will be of interest, for comparative purposes, to evaluate this model for the case in

which only one value of r is used for both the large- and small-step problems. This model will

be called nondiscriminating in Section 5. In this case the sums in Equation 25 are over both

problem types, with T being equal to 5241 samples and S being 86 subproblems. We have

I2Z (P- 1  P2) = 0.00134
1=1

and

a •S 0.181

The average mean square error over the large- plus the small-step problems is then

;r2 1 - r
- > S+L =0.00134 +0.118)

We are interested in the selection of an optimum value of r for these three problem types.

Equation 25 can be written as

Tr 2 1 - r
<0-> P - + v - (29)

where k and v are the constants for the specific problem type. The minimum of this function

over r can then be found by setting

.--
d 0>P -2vr 2 + (2k + 4v)r - 2v 0 (30)

dr (1- r2)
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which yields two roots

r,2 =k+2v [(k+ v2 "1/2 (31)

The minus sign yields a value of r between 0 and 1 and is also the minimum.

For the large-step problem Equation 31 gives an optimum r = 0.883. Using this value of

r in Equation 26 we have a corresponding minimum mean square error of 0.0190.

For the small-step problem Equation 31 gives an optimum r = 0.953. Using this value of

r in Equation 27, we have a corresponding minimum mean square error of 0.00931.

For the large- plus small-step problems Equation 31 gives an optimum r - 0.915. Using

this value of r in Equation 28, we have a corresponding minimum mean square error of 0.0147.

4.2. A MODEL WITH CONSTANT WEIGHTING

The second model gives a constant weight to each of N samples; that is, it is a simple

averaging model. The derivation of the response and errors for this model will parallel that

for the geometric model, and some of the detailed explanations will be omitted.

The weighting function is

wi = I/N (32)

where N is the number of samples in the average and the weight is 1/N to satisfy Equation 3.

In this case the transient response will be

N-n P2 +N P1 =P + 2 In (33)

and the steady-state response

r(n) = P2  (34)

The variance of r(n) during the transient phase will be the variance of the sum of N terms,

each with weight 1/N:

a2 (n) N-n 2 n 2
r N2
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The variance of r(n) during the steady-state phase will simply be

2
2 02 (36)

Following the same procedures and arguments developed in the derivation of Equations 15

through 19, we have

I N[r(-- P 2]
2  = + 2N n - P21]2

n=1 n-i1

(P2 " P1)2

n-i

(P P) 2 (-1__L+-÷ 1(37)

and analogous to Equation 20 we have

I n=N 2 n=N [2 +n (2 2)]

N E r(n) N - 2 E No R 2 1iJ
n-1 n-i

=12+Ni + 1 ~2_(a2) (38)
N1 2N+ 2(12

The average mean square error during the transient phase is then
2(.51 1 + I )+1 a2+N+I o_2

ley>,, T = (P22N 2 121- ) (39)

The average mean square error during the steady-state phase is the variance, given by Equa-

tion 36.

2
<e 

(40)

The average mean square error over the whole subproblem is then

,coy, N I -ley,+MMN 02
<SP M<>T ~M<>s

2
=N -NI (322 2

S 1 " N2 ) "+" 2(1Y +_)+ M 2 N (41)
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As with the geometric weighted model, we are interested in the performance of this model

over the problems given to the subjects. The average mean square error over a problem Is

given by

-T i-S Mi (Pi I - Pid2  N 1  I 1 N(2 2 a
<e >P T I + _ a _a~-0 i +-~ (42)

Using the same arguments as those leading to Equation 25, we have

7 I I I.=S 2 1i=S2

<e->P . T 3 2 6"N' (Pi- i' NP S i a (43)

These sums are the same as those calculated for the geometric weighted model. For the large-

step problem we have

<e =0.00251 - + + 0.162 (44)

For the small-step problem,

<e > 0.000465 (N - + 1--) + 0.194 (45)

And for the large- plus small-step problems,

<e> 0.00134 '-'ý + 0.181 (46)

The minima can again be selected by letting k and v be the constants for the particular problem

type
<e-) = --+ +•(47)

= 3 2 ON N47

and solving

d <e >P k k v - 0 (48)d -T- 7-3 -73 o 48
dO N N

This yields

N= + (49)
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For the large-step problem Equation 49 gives an optimum N - 14.1. Using this value of

N in Equation 44 we have a corresponding minimum mean square error of 0.0220.

For the small-step problem Equation 49 gives an optimum N = 35.3. Using this value of

N in Equation 45, we have a corresponding minimum mean square error of 0.0107.

For the large- plus small-step problems, Equation 49 gives an optimum N = 20.1. Using

this value of N in Equation 46 we have a corresponding minimum mean square error or 0.0172.

4.3. A DESCRIPTIVE MODEL

Inspection of data on the subjects' response shows that they did not perform the estimation

task as smoothly as the two normative models. The responses were characterized by rapid

adjustments separated by periods of little or no movement. This evidence, together with

thoughts on how this task might be performed, led to the postulation of the following model as

an attempt to describe the human performance.

This model operates as follows. The subject maintains a short running average of the

previous k3 flashes. This average is of exactly the same type as the second normative model

discussed above. At each flash this average is compared with the existing setting of the re-

sponse lever and the difference noted. If this distance measure is greater than a prescribed

criterion level, the response is changed to a new value at some point intermediate between the

old response and the running average. If the difference is less than the criterion level, the

response remains unchanged.

Several features make this descriptive model attractive. It uses the lever as a memory

device, moving it only a fraction of the distance to the new average and thus preserving some of

the information in the previous setting. This memory function permits a smaller number of

flashes in the running average than would otherwise be required to produce the levels of mean

square error measured from the subject's responses. The criterion level corresponds to the

concept of the subjects' smallest perceptible difference between the running average and the

lever position. It permits the response to remain stationary during periods when the running

average deviates only slightly from the response.

This model's operation can be thought of as a form of hypothesis testing. At each flash it

is testing the hypothesis that the running average is from a population described by the re-

sponse lever setting, using the criterion level as a form of significance measure. The subject's

performance is thus viewed as a succession of decision making situations. This framework is

appropriate to the inclusion of more higher mental processes than are in the usual manual

tracking task.
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This model can be described mathematically as follows:

t=k3

u(n) - = ni+ (50)

where u(n) is the running average of k3 flashes, sn. If r(n) is the current lever setting and

Ir(n) - u(n)I kI (51)

where kI is the criterion band, then

r(n + 1) = r(n) (52)

If, however,

Ir(n) - u(n)I > k1  (53)

then

r(n + 1) = r(n) + k2 [u(n) - r(n)] (54)

where k2 is the fractional lever adjustment.

A fourth parameter, k4 , was also considered. It represents a time (flash) shift between

the subject's and the model's responses. The subject's response at n wVAs compared to the

model's at n - k 4.

The four parameters are constrained to the following ranges:

0 < kI < 1 (55)

where 0 yields adjustment decisions at each sample and 1 yields no adjustment decisions.

0 < k 2 < 1 (56)

where 0 yields no response changes and I represents simply the following of the running

average whenever an adjustment decision is made:

1 < k _< K, k an integer (57)3 3

where K is some reasonable maximum number of flashes that the subject could be expected

to assimilate in one averaging calculation. No definite values for K are Imown for this task.

It is certainly reasonable to assume that the flashes are not simply remembered as a succession

of binary symbols but are encoded into a larger symbol set, perhaps one depending on the lengths

of runs of one of the binary symbols. Considering the nature of the task and its difficulty, it
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would seem unlikely that more than 20 flashes could be used in an averaging calculation; a

value closer to 10 would be more appropriate.

There are no particular constraints on k4 except that k 4 < 0 implies subject prediction with

respect to the model.

Once the form of the model has been thus chosen, the task is to select parameter sets

(ki , k 2, k2, k,) which will make the model best describe the human performance. The criterion

used for this selection was the minimization of the mean square error between the subject's

and the model's responses over particular problems. This measure was selected as providing

the best signal measure of performance, as was mentioned in Section 2. The selection of the

minimum mean square error for the criterion assures a fairly close fit to the transient portion

of the response where the error is large, at the possible expense of fit to the steady-state

portion.

The actual minimization process was carried out as follows. The model was programmed

on an IBM 709 computer. The computer was then fed four of the input problems used in the

experiment plus the responses of one of the four subjects to these problems. At each sample

point the squared difference between the subject's and the model's responses was calculated

and accumulated. The values obtained were simply printed out at the end of each problem-

parameter set combination. The large number of parameter sets possible and the possibility

of numerous minima precluded the use of an automatic searching technique for the minima.

Several computer runs were made in which previously selected parameter ranges were either

extended or filled in, according to the results of the previous run. The total variation of the

parameters was through the following ranges.

0.02 < k <_. 0.20 (6 values)

0.10 < k 2 < 0.90 ( 7 values)

1 < k 3 < 28 (12 values)

-2 < k 4 < 4 ( 6 values)

The four problems investigated were the large- and small-step problems, random constraint,

at 1 and 4 fps. The subject was 8-2.

Several parameter sets with approximately equal minimum error measures were found

for each problem type. In each case these minima represented either a valley in the error

function or fairly distinct minima separated by regions of higher error. Table I shows the
2

various parameter sets and their corresponding minimum errors, <eMS>P. In each group

of parameter sets one can find various tradeoffs among the parameters which yield the approx-

imately equal error measures.
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TABLE !. PARAMETER SETS FOR THE DESUIPTIVE MODEL YIELDING
MINIMUM VALUES OF <eW>p

Fractional
Criterion Adjustment Memory Lag 2 2

k1 k2 k3 k4 <eMS>P <eM>p <2e MeMS>p P

Large Step, 1 fps

1. 0.05 0.20 8 0 0.0104 0.0185 0.0030 0.109
2. 0.12 0.60 12 0 0.0121 0.0198 0.0001 0.003

Small Step, 1 fps

1. 0.05 0.10 6 0 0.0076 0.0130 -0.0066 -0.332
2. 0.05 0.20 12 0 0.0079 0.0140 -0.0079 -0.375
3. 0.08 0.20 10 0 0.0083 0.0130 -0.0073 -0.351
4. 0.12 0.20 8 0 0.0086 0.0130 -0.0076 -0.359
5. 0.15 0.40 10 0 0.0092 0.0120 -0.0072 -0.343

Large Step, 4 fps

1. 0.05 0.10 8 2 0.0098 0.0240 0.0062 0.209
2. 0.05 0.10 12 0 0.0098 0.0210 0.0092 0.321
3. 0.10 0.10 8 2 0.0106 0.0240 0.0054 0.170
4. 0.15 0.10 8 2 0.0117 0.0280 0.0003 0.008
5. 0.15 0.30 12 2 0.0121 0.0300 -0.0021 0.060

Small Step, 4 fps

1. 0.05 0.10 16 2 0.0102 0.0140 -0.0102 -0.426
2. 0.05 0.10 24 0 0.0102 0.0160 -0.0122 -0.480
3. 0.10 0.10 16 1 0.0102 0.0140 -0.0102 -0.426
4. 0.10 0.30 24 0 0.0106 0.0140 -0.0106 -0.418
5. 0.10 0.50 24 1 0.0106 0.0150 -0.0116 -0.460

The following method was devised as a means for selecting the best descriptive model from
2

among these parameter sets with approximately equal <eMS>P.

The subject's error, es(n), can be written as

es(n) S eM(n) + eMS(n) (58)

where eM(n) is the model's error and eMS(n) is the error between the subject and the model.

Squaring this error, we have

e2( 2 eM2 (n) + e2S(n) + 2eM(n) eM(n) (59)

The average value of this squared error over a particular problem is then

2 2 2
<e2> = <eM >P + <eMS>P +< 2 eMeMS>P (60)
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The minimization process used to select the parameter sets was concerned with finding mini-
2 2

mum values of <e A>. The computer also calculated values for <e M>P,, the model's error.

<e2>P was, of course, one of the measures made on the subject's performance. The term

<2eM e S> can therefore be calculated from Equation 60.

These error terms can be interpreted in the following manner. Consider the subject's

error at any point in the sample sequence to have two components, one dependent in some

manner on the actual input samples and the other on phenomena not related to the input. The

first part of this error might be termed coherent, the second part noise. Consider now a

descriptive model and its relationship to these two error measures. If it performs the task
2

exactly as the subjects do, it will have an error, <eM>P, which is equal to the subject's
2

coherent, or sample-dependent, error; the error between this model and the subject, <eMS> P

would then be equal to the subject's noise or sample independent error. The subjects' noise

can be considered random fluctuations in the response about the coherent value. Since <eM>P

approaches zero over a large set of subproblems, then <eM e MS> will also approach zero.

If, on the other hand, the model does not represent the entire coherent part of the subject's

response, that is, if it is not a complete descriptor of the subject's coherent behavior, then

eMS(n) will be partially dependent on the sample series and therefore will be correlated with

eM(n). in this case the term <2eM e MSP will not approach zero. This correlation can

therefore be used as an additional selection device. It can be written in the normalized form

<e MeNS > P
P= 2 e2> <e2s>P)1/2 (61)

Table I shows the values of <eM2 >P, <2 e eM>F and p.M < M eM S >P n

The normalized correlation, p, provides a measure giving good discrimination among

the parameter sets for the large-step problems. For the large-step problem at 1 fps, param-

eter set 2 has a value of p which is essentially zero. At 4 fps, parameter set 4 has a very

low value for p. Neither of the small-step problems, however, produces a correlation which

discriminates among the parameter sets or which is as small as that found for the large-step

problem. It would appear on the basis of this evidence that the postulated descriptive model

represents the subject's performance on the large-step problems better than on the small-

step ones.

Zero correlation, as defined by Equation 61, does not necessarily imply a complete lack

of dependence of eMs(n) on the sample series. Two hypotheses could be used to explain the

fairly large <eMS>> which remained even for p = 0. One would simply be that this level of
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noise did exist in the subjects' performance. The other would be that this "noise" component

had at least some portion which was related to the sample series but which was not correlated

with eM(n). Perhaps one reason for a fairly large noise component would be variations in the

subjects' method of performing the task during the problem run.

4.4. A NORMATIVE VARIATION

The descriptive model discussed above was constructed as an approximation to the human

performance on this task. It is also interesting to see how well this model form can do if the
2

parameters are selected to give a minimum <eM> p: to be normative in the same sense as

the models with geometric and constant weighting. Normative parameter sets for the large-
2

and small-step problems were found by using the computer to calculate <eM>P and converg-

ing on the minimum value by successive selection of the parameter sets as in the selection
2

of the minimum <eMS> for the descrip*ive models. For this selection k4 was set equal to

zero.

The large-step problem yielded one distinct and interesting minimum: k1  0.02, k2 :

0.10, and k 3 - 1. All three of these parameters are the smallest values examined, and this

minimum is in one corner of the error surface. This model would operate as follows: with

k = 1, the running average would have values of either 0 or 1, depending on the most recent

sample; with k2 = 0.02, there would be a response adjustment at every sample except when

the response was within 0.002 of either 0 or 1. This adjustment would be 0.10 of the distance

between the previous response and 0 or 1. RMS error for this model was 0.124.

The best normative parameter set for the small-step problem was found to be k 1 m 0.20,

k2 = 0.10, and k 3 = 6. Again we have the minimum occurring at the smallest value of k 2 , but

in this case the criterion for changing the response is fairly high. We have s.x samples in

the memory. The root mean square error for this model was 0.099.

Both the geometric and the constant weighted models are included as special cat this

descriptive model. When k 3 = I and kI =- 0 the descriptive model is identical with the I.

metric weighted model with r = I - k 2 . When kI = 0 and k 2 = I the model is identical with

the constant weighted model with N = k 3 . The best normative parameter set for the large-

step problem deviates from the simple geometric form only when the response is within

0.02 of either 0 or 1. The best normative parameter set for the small-step problem does

not yield as low an error as the optimum of either the geometric or the constant weighted

model. The equivalent parameter sets for these models were outside the parameter range

investigated, however.
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It would seem that this decision model, within its restricted parameter sets, represents

a reasonable method for performing this task when the step changes are large, but not when

they are small. It is interesting in this light to note that the decision model did not seem to

describe the subject's performance on tWe small-step problem as well as on the large-step

problem.

Figures 21 and 22 show a small representative portion of three responses to the same

input sample sequence. The normative model at the top is the parameter set selected above

as the best normative set for the decision model. Note the rapid response changes of the

large-step model. The center response is that of two of the descriptive parameter sets, and

the lower response is the subject's. The descriptive parameter set for the large-step prob-

lem is the one with the low value of p. The set for the small-step problem was selected

somewhat arbitrarily as one of the five sets that seemed like a reasonable description. The

fairly high coherent subject's error is clearly evident in these figures.

0.5• RepneNorrmative]Vq

I - " • nse~ v • Model -

0.5
o Model

.J n r~ E ý 1 Re. 1 1Il

20 40 60 80 100 120 140 160 180 200 220 240
NUMBER OF FLASHES

FIGURE 21. RESPONSES OF TWO MATHEMATICAL
MODELS AND A SUBJECT TO A PORTION OF A
LARGE-STEP PROBLEM, RANDOM CONSTRAINT,
AT 1 FPS. Normative Model K1 - 0.02, K2 = 0.10,
K3 - 1; Descriptive Model K1 = 0.12, K2 - 0.60,

IC3  12, X4 - 0.
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DInput Probability Normative Model
0.5

905 Descriptive Model

0
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NUMBER OF FLASHES

FIGURE 22. RESPONSES OF TWO MATHEMATICAL MODELS
AND A SUBJECT TO A PORTION OF A SMALL-STEP PROB-
LEM, RANDOM CONSTRAINT, AT 1 FPS. Normative Model
K1 = 0.20, K2 - 0.10, K3 = 6; Descriptive Model K1 - 0.15,

K2 - 0.40, K3 - 10, K' - 0.
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The response measures presented in Section 3 do not directly indicate the quality of the

performance. Quantitative standards are necessary for the measures. Mean error is an

exception in that a standard of zero is reasonable and was in fact achieved. The normative

models derived in Section 4 provide the standards for the other measures. They permit

comparison between the subjects' performance and that of several simple machines.

Several important differences exist between the subjects' and the models' knowledge of

the task. The subjects were not instructed on the step-function nature of the input. In fact

they were specifically told to expect slow, continuous changes in the probability. The models,

on the other hand, were optimized for step input functions. It is reasonable to assume,

however, that the subjects' original ignorant and misinformed state did not persist for long

after the tracking began. The rapid performance asymptote (less than 45 minutes) and the

discrimination between the small- and large-step problems attest to this. The model does

not have learning and adaptive abilities, of course, and it was therefore given the maximum

knowledge that the subject could theoretically derive from the task. The model-subject

comparison thus includes the subjects' learning and adaptive abilities. This method of
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subject instruction will allow more valid generalization of the measured estimation ability

to other input forms.

The same situation exists in the relative knowledge of the input statistics possessed by

the subjects and the models. The models were completely informed of the distributions of

step size, step direction, subproblem length, and probability. The subjects knew nothing of

these initially, but it can again be assumed that they learned much about them while perform-

ing. The adaptation to the small- and large-step problems is an example of the subjects'

distinguishing between two distributions of step size.

The models were provided with a definite criterion for optimum performance, the min-

imum mean square error. The subjects were instructed to use the same criterion. The

actual criteria used by the subjects, however, correspond to their conception of best per-

formance and are a function of the instructions, of performing the task, and of personal abilities

and sensitivities.

The subjects and the models will be compared by means of the following measures:

detection, D; convergence, C; root mean square error, RMSE; aid root mean square error

after convergence, RMSEC. These four measures, plus mean error, provide a fairly complete

description of the performance.

Detection and convergence were calculated by using Equations 10 and 33. These measures

are for the expected values of the responses and are not the expected values of detection and

convergence. The difference is not important of this comparison.

RMS error was calculated by using Equations 23 and 41. RMS error after convergence

was calculated by using Equations 22 and 40 with the addition of a correction for the small

error contributed by the remaining transient after convergence. This transient error was

calculated by using Equations 19 and 37.

Two values of RMSE were calculated, one with an infinite sample population as implied

in Section 4 and one with finite populations such as those used in the experiment. The cor-

rection factor for the finite populations is derived in Appendix B. It was calculated for an

average number of flashes for the subproblems and corresponds to the random problem type.

Two specific step sizes were selected for the comparison: 0.40 for the large-step prob-

lem and 0.15 for the small-step one. These are approximately the average respective step

sizes. These step changes are examined at a flash rate of I fps and with the random problem

type.

Three forms of each normative model are used. Two of these correspond to the optimum

models selected for separate consideration of the large- and small-step problems. They are
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called "discriminating" models. The third model in called "nondiscriminating,"since it is

required to be optimum over both the small- and the large-step problems simultaneously.

The parameters for these models were calculated in Section 4. The nondiscriminating models

represent the only case where the models are not provided the complete statistical informa-

tion.

Measurements of the performance of models and subjects are shown in Table II. Also

included are values of detection and convergence for the descriptive models shown in Figures

21 and 22. These measures are averages over a set of subproblems with average step sizes

of approximately 0.40 and 0.15. RMSE Pnd RMSEC were not available from the descriptive

model's data.

The response speed of the nondiscriminating model lies between the rapid response of

the large-step discriminating models and the smoothing responses of the small-step dis-

criminating models. The discriminating models have lower values of RMSE, of course, since

this was the optimization criterion. The nondiscriminating models have an RMSEC between

those of the two discriminating models; it is lower for the large-step problem and higher for

the small-step problem.

The subject-model comparison shows a striking difference in the detection values for the

large-step problem. The normative models have detection values considerably smaller than

the subjects'. This results, to a large extent, from the difference between the models' smooth

response and the criterion-testing nature of the subjects' response hypothesized in Section 4.

The normative models begin to respond to the step change with the first flash of the new proba-

bility. The subjects require a number of flashes to perceive a significant probability change

and the necessity of a response change. The large-step descriptive model has a detection value

comparable to the subjects'.

On the small-step problem the subjects' detection value is higher than any of the models'

although it is comparable to the discriminating model.

In convergence, however, the subjects performed comparably to the models. On the

large-step problem only the discriminating, constant model has a smaller value. On the

small-step problem the subjects' convergence value lies between those of the discriminating

and nondiscriminating models.

The hypothesis that the subjects were adapting to the difference between the small- and

large-step problems receives support from the convergence comparisons. The nondiscrim-

inating models show a considerable decrease in convergence from the large- to the small-

step problems. The discriminating models show an increase in convergence from the large-
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TABLE II. COMPARISON OF THE PERFORMANCES OF THE SUBJECTS
AND THE MATHEMATICAL MODELS

Detection Convergence RMSE RMSEc
(Flashes) (Flashes) (Probability)

Large-Step Infinite Finite
Problem Population Population
(step a 0.40)

Geometric

r = 0.883 1.1 16.7 0.143 0.101 0.087

*r a 0.915 1.5 23.4 0.148 0.086 0.067

Constant

N = 14 1.8 12.2 0.155 0.108 0.093

*N a 20 2.5 17.5 0.161 0.090 0.072

Subjects (1 fps) 7.5 15.0 0.170 0.091

Descriptive Model 4.2 14.2

Small-Step
Problem
(step - 0.15)

Geometric

r = 0.953 8.4 22.8 0.094 0.073 0.042

*r a 0.915 4.6 12.4 0.103 0.094 0.073

Constant

N a 35 11.7 23.3 0.100 0.076 0.048

*N v 20 6.7 13.3 0.110 0.099 0.079

Subjects (1 fps) 12.5 17.5 0.112 0.095

Descriptive Model 7.2 21.0

*r a 0.915 and N = 20 are the nondiscriminating models.

to the small-step problem as they change to a smoother response form. The subjects showed

a similar slight increase in convergence from the large- to the small-step problems.

The subjects' delayed detection with comparable convergence illustrates the discontin-

uous nature of their behavior. Although unable, or unwilling, to indicate the presence of a

change in the probability for the first seven to twelve flashes, they were then able, however,

to converge on the new probability in five to seven more flashes.
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The subjects were slightly higher than the models in RMSE, mainly because they made

many errors during the predetection period.

The subjects compare favorably in RMSEC with the infinite population values but are

poorer than all but one of the finite population values. The introduction of the finite population

correction caused an appreciable drop in RMSEc, particularly for the models with long

averages. It appears then, by comparison, that the subjects were not fully utilizing the

series constraint. On the average, their RMSEC dropped only about 0.014 from the random

problem type, with an average population of close to 60, to the constrained problem type,

where the population was only 17.

In comparison with these models the subjects seem fairly adept at converging on a new

probability after they decided a change had occurred. This aspect of the task may well have

received the most attention. Concentration on this would lead to increased RMSEC because

of false decisions during the static portion of the subproblem. This represents a deviation

from the explicit instructions.

6
CONCLUSION

The human performance on this task was considerably better than expected. Two features

distinguish this task from those used in other investigations of probability estimation. One

is the dynamic set under which the subjects were performing. This set for changing proba-

bilittes was probably induced primarily by the subjects' actual experience in estimating the

dynamic probabilities. The change in behavior from the large- to the small-step problems

could be viewed as a partial loss of this dynamic set.

The second distinguishing feature was the display and response mechanisms. The par-

ticular arrangement of lights, scale, and lever probably had a high stimulus-response com-

patibility.

It seems unlikely that probability estimation is, or at least need be, the limiting factor

in human binary decision making. Furthermore, it is reasonable to inquire into probability

estimation as a possiLle useful function of man in future man-machine systems requiring the

use of Information from uncertain or probabilistic sources.
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Appendix A

INPUT PROBASIUTY GENERATION

The input step sequence was generated by exhausting the step changes systematically, us-

ing Table III. The generation procedure was as follows. All problems were started at P = 0.50,

the row identified as "probability from," 0.50. The table entries are step sizes, those to the

right of the diagonal being positive and to the left negative. One of the step changes in the 0.50

row was selected at random. This step selection led to a new probability, "probability to."

TABLE [I1. PROBABILITIES USED TO GENERATE SEQUENCES OF FLASHES

Large-Step Problem

Probability To

0.02 0.18 0.34 0.50 0.66 0.82 0.98

Probability
From 0.02 0.16 0.32 0.48 0.64 - -

0.18 0.18 - 0.16 0.32 0.48 0.64 -

0.34 0.32 0.16 - 0.16 0.32 0.48 0.64

0.50 0.48 0.32 0.16 - 0.16 0.32 0.48 Steps + and -

0.66 0.64 0.48 0.32 0.16 - 0.16 0.32 0.16, 0.32, 0.48,

0.82 - 0.64 0.48 0.32 0.16 - 0.16 and 0.64

0.98 - - 0.64 0.48 0.32 0.16 -

Small-Step Problem

Probability To

0.08 0.14 0.26 0.32 0.44 0.50 0.56 0.68 0.74 0.86 0.92

0.08 - 0.06 0.18 0.24 - - - - - - -

0.14 0.06 - 0.12 0.18 - - - - - - -

0.26 0.18 0.12 - 0.06 0.18 0.24 - - - - -

0.32 0.24 0.18 0.06 - 0.12 0.18 0.24 - - - -

0.44 - - 0.18 0.12 - 0.06 0.12 0.24 - - -

0.50 - - 0.24 0.18 0.06 - 0.06 0.18 0.24 - -

0.56 - - - 0.24 0.12 0.06 - 0.12 0.18 - -

0.68 - - - - 0.24 0.18 0.12 - 0.06 0.18 0.24

0.74 - - - - - 0.24 0.18 0.06 - 0.12 0.18

0.86 - - - - - - - 0.18 0.12 - 0.06

0.92 - - - - - - - 0.24 0.18 0.06 -

Step + and - 0.06, 0.12, 0.18, 0.24
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This new probability was in turn selected in the "probability from" list and a step change from

it selected randomly. The step selections were made without replacement. This procedure

was continued until the entire table was exhausted. It was necessary to constrain the random

selection at times in order to exhaust the table without repeating steps. This selection method

gave a "problem" with exactly one step of each size and direction to each probability. The

large-step problems and the small-step problems were produced by separate tables.

The number of flashes at each probability was selected randomly from the set: 42, 54, 66,

and 78 for the small-step problems, and 35, 51, 74, and 89 for the large-step problems. For

the constrained problems, both large- and small-step, the values were multiples of 17: 34, 51,

68, and 85.

Five problems were generated from each table, one for each rate. The same series of

steps was used for the random and constrained problem types.

Appendix 8

VARIANCES OF SAMPLE AVERAGES FROM FINITE POPULATIONS

Consider a population yi with mean Y and with M members. Let N samples xi be drawn

from yi with

i-N i=N

i=- wix where Ewi =I

The variance of x is

E[( -)2] - E (V X

af E WlI(X1

a E wi(xi -'V) w (X - 7.

{ w i iN J

i-N N=
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This expression contains terms which can be written as

k-M

E (xi -1 k-iz~i M2 Ek=(Yk ")

and

,_ YM-M4la k=M 2]

LX'i 101 kai

k-M
"• ~~(Yk _ j)2, l

-( 1) k-i

The variance then becomes

inN k-M -N iN MkMz '2 2 -2 +--12
" "N E i (Y" w7wj -+l -(Yk

w-I [, 2 .. 1 !(Yk _ y)2
i- k- w ( -, 1 1 1 -I

i-i-- k-i k=

For a subproblem with P, = I and length Mi we have

k-M1

and we can then write

•r'•'''[-•]"M wi M1-i1
i-i

.ra ~ ~ w (n- M--• a

For the geometric weighted model with wI = ar

,2 W mi\Iir% i

r Mi/I-r MM I, ij

For the constant weighted model with wi = 1/N,

[7F/Mi\,~1
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Appedix C
ORDER OF PRESENTATION

The problems were presented to the subjects in the following order,

where L, S = large- and small-step problems, respectively

R, C = random and constrained problems

1, 2, . .. , 5 after R or C = the particular problem

Part 1, 2, 3, 4 = divisions of a particular problem

Session Problem Part Rate (fps)

1 LRI 2
LC1 1 1

2 SCI 4
SRI 8
LC2 1 0.5

3 LR2 1 1
SR2 2

4 LR3 1 0.5
LR2 2 1
LC5 8

5 SR3 4
LC2 2 0.5
LR5 4

6 SC2 1 1
SR4 1 1

7 SC3 1 0.5
SR5 1 0.5

8 LC3 2
SR5 2 0.5

9 SC3 2 0.5
LC4 4
LR4 8

10 SR5 3 0.5
SR4 2 1

11 LC2 3 0.5
SC4 8
SC3 3 0.5

12 SR5 4 0.5
SC5 2

13 LC2 4 0.5
LR3 2 0.5
Lf3 3 0.5

14 SC3 4 0.5
LCI 2 1

15 LR3 4 0.5
SC2 2 1
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Appendix D
INSTRUCTIONS

The following formal instructions were used. The instruction method is discussed in

Section 2.

"This experiment is concerned with your ability to estimate probabilities and to follow

changes that occur in them as time passes. You will see a display of two lights, a left and a

right light. At each flash one or the other of the lights will light, indicating right or left. This

is exactly analogous to the drawing at regular intervals of red and green balls from a jar. You

will be asked to estimate, by setting a dial, your best guess as to the percentage of balls that

are right. The dial is calibrated from 0 to 100 representing no right to all right flashes. For

example, if you think that about 68% of the flashes are right then set the dial at 68. The actual
percentages cover the entire range from 0 to 100 and have all values in between. The percent-

ages do not necessarily fall on the dial markings.

"The important new work to come out of this experiment is your ability to notice changes

in the percentages and to follolV the changing percentage with the dial setting. The analogy with

the balls in the jar is the case where one or the other color is being taken out of the jar by an-

other person without your knowledge. At times the percentage will change slowly in a continu-

ous fashion. At other times the percentage will change suddenly, as though a whole handful of

one color had been removed. If you are uncertain as to the percentage set the dial at 50.

"You will be paid according to how well you do. At the end of each problem, 10 to 25 min-

utes, you will be able to read the amount of money off the meter on the computer. The com-

puter calculates the difference between your estimate and the actual probability, the error, and

accumulates this error over the problem. It also adds up a constant amount of money per min-

ute. You are paid the difference. The computer is adjusted so that if you left the lever at 50

you would get no money.

"You will wear a pair of earphones and have a microphone. A low 'seashore' type noise

will be fed into the earphones in order to mask out noises from the street and the laboratory.

When I talk to you the noise will be removed. You can be heard at all times through your

microphone. You are welcome to make verbal comments during the experiment. These are not

being recorded and any sort of language is acceptable."
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Appedix: I
TWO QUALITATIVE RSPONSE. EXCEPTIONS

On two occasions during approximately 70 hours of tracking, the tracking response was

qualitatively variant from the norm. These two situations lasted for a total of approximately

35 minutes.

The first occurred during the pilot experiment. During one particular problem in the third

session a subject was accumulating error at a much higher rate than in any of the previous

sessions or problems. Inspection of her records showed that detection was considerably higher

than it had been before. The instructions concerning the error formation and the payoff were

repeated with special emphasis on the rapid error build up with large discrepancies between

probability and response. Her response returned to normal on the next problem.

The hypothesis here is that she was computing the new probability to a high degree of

accuracy before she responded to the change. The "normal" response produces movement

toward the new probability as soon as it is perceived, with further refinements as more data,

flashes, are accumulated.

The second anomaly occurred in the response of a subject in his twelfth session of the main

experiment. He was tracking a large-step problem at 2 fps. The experimenter noted that the

payoff was going negative; the error accumulation was faster than the pay accumulation. Upon

examining the records it was established that for about the first 3/4 of the problem, about 15

minutes, the response was the mirror image of the proper or normal response. The scale was

reversed in relation to the light flashes. A check on the equipment failed to reveal any mal-

function. Upon questioning after the session the subject stated that he was a bit mixed up at times.

He evidently had no idea that he was doing a fairly good job of mirror-image tracking.

He was given this particular problem again in a special sixteenth session, and this second
run was used in the analysis.

Appendix F
DATA NOT AVERAGED OVER SUBJECTS

Figures 23 through 29 show some of the principal variable interactions for individual sub-

jects. The data for detection and convergence show appreciable magnitude variations between

subjects but maintain the same qualitative relationships in direction of change and the distinc-

tion between small-step and large-step problems. Subject S-I was quite consistently slower in

his response than the other three. All subjects show a similar increase in RMSE with rate

from 1 to 8 fps. Subject S-3 is consistently higher. All subjects show a decrease in RMSEC
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from 0.5 to 2 fps. Subjects S-2 and S-4 show a continued decrease at 4 and 8 fps, whereas S-3

and S-1 show an increase. FAR decreases with rate for three subjects; subject S-I had little

variation by comparison.

Mean error did not vary significantly among subjects.
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FIGURE 23. DETECTION AS A FUNCTION OF STEP SIZE FOR FOUR SUBJECTS.
Detection It measured in flashes.
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FIGURE 24. DETECTION AS A FUNCTION OF FLASH RATE FOR FOUR SUBJECTS.
Convergence is measured in flashes.
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FIGURE 25. CONVERGENCE AS A FUNCTION OF STEP SIZE FOR FOUR SUBJECTS.
Convergenoe is measured in flashes.
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FIGURE 26. CONVERGENCE AS A FUNCTION OF FLASH RATE FOR FOUR SUBJECTS.
Convergence Is measured in flashes.
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